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Abstract. We argue that, in contrast to the non-relativistic approach, a relativistic evaluation of the
nucleon–hole and delta-isobar-nucleon–hole contributions to the pion self-energy incorporates the s-wave
scattering, whose magnitude within the RPA is in conflict with the near-threshold behavior imposed by
chiral symmetry. As a result, a relativistic approach to the pion self-energy in isospin-symmetric nuclear
matter, containing only these diagrams, does not satisfy the known experimental results on the near-
threshold behavior of the π-nucleon (forward) scattering amplitude.

PACS. 24.10.Cn Many-body theory – 13.75.Cs Nucleon-nucleon interactions (including antinucleons,
deuterons, etc.) – 21.65.+f Nuclear matter – 25.70.-z Low and intermediate energy heavy-ion reactions

Originated from experiments with relativistic heavy-
ion collisions, considerable efforts from many theoretical
groups were made in relativistic approaches to the pion
self-energy in isospin-symmetric nuclear matter (see, e.g.,
[1–5] and references therein). Basically, such calculations,
involving relativistic kinematics, are restricted to the con-
tributions from nucleon particle–hole (ph) and ∆-isobar-
nucleon–hole (∆h) excitations in the medium, as given by
the following diagrams:

+Π  =~

.

Here the ∆-isobar is shown by a double line. The shaded
effective vertices for the pion interaction with nucleons and
deltas take into account the correlations in the medium.
These vertices are irreducible with respect to pion lines.

As has been pointed out by many authors, such cal-
culations yield a pion self-energy Π̃ (ω, k), which, in the
low-density limit, does not reproduce exactly the pion self-
energy obtained from the non-relativistic reduction of the
pion-nucleon and pion-delta Lagrangian. The purpose of
this Letter is to illuminate the reason of this discrepancy,
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by showing that a relativistic approach containing only
the above diagrams does not describe the pion self-energy
appropriately.

In the following, we employ the widely used pseudovec-
tor interaction of pions with nucleons and deltas. The cor-
responding Lagrangian density can be written in the fol-
lowing form:

Lint =
f

mπ
ψ̄Nγµγ5τψN∂µϕ

+
f∆

mπ
ψ̄µ

∆T+ψN∂µϕ+
f∆

mπ
ψ̄NTψµ

∆∂µϕ. (1)

Here ϕ is the pseudoscalar isovector pion field, mπ is the
bare pion mass, and f = 0.988 is the pion-nucleon cou-
pling constant. The excitation of the ∆ in pion-nucleon
scattering is described by the last two terms in the La-
grangian with the Chew-Low value of the coupling con-
stant, fπN∆ = 2f . The nucleon field is denoted by ψN ,
and ψ∆ stands for the Rarita-Schwinger spinor of the
∆-baryon. Here and below, we denote by τ the isospin-
(1/2) operators, which act on the isobaric doublet ψ of the
nucleon field. The ∆-baryon is an isospin-(3/2) particle
represented by a quartet of four states. T are the isospin
transition operators between the isospin-(1/2) and -(3/2)
fields. We use the system of units � = c = 1.
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Fig. 1. Pion self-energy in isosymmetric nuclear matter at
saturation density n = n0. The effective nucleon mass is taken
to be M∗ = 0.8M . The solid line is obtained in the relativis-
tic approach. The dashed line corresponds to a standard non-
relativistic calculation. For k = 0, the non-relativistic counter-
part of ReΠ̃ vanishes identically.

The non-relativistic reduction of the pion-nucleon and
pion-delta coupling, given by eq. (1), leads to an effective
interaction Hamiltonian of the form (see, e.g., [6,7]):

Hint =
f

mπ
(σ · ∇) (τ · ϕ) + f∆

mπ

(
S+ · ∇) (

T+ · ϕ)
+ h.c.,

(2)
where σ are the Pauli matrices, and S+ are the transition
spin operators connecting spin-(1/2) and -(3/2) states.

To show explicitly the above-mentioned problem, we
perform both a relativistic and a non-relativistic calcu-
lation of the pion self-energy in a simple model, where
the NN , N∆, and ∆∆ correlations are simulated by phe-
nomenological contact interactions with three Landau-
Migdal parameters, g′NN , g′N∆, g′∆∆. (For details of the
calculation see [8].) Modern experiments and theoretical
estimates [9–11] point out that g′N∆ must be essentially
smaller than g′NN and g′∆∆. The most recent analysis, re-
ported in [12], suggests g′NN = 0.6, g′N∆ = 0.24 ± 0.10,
g′∆∆ = 0.6. While we do not discuss possible deviations
from this set of Landau-Migdal parameters, let us inves-
tigate the behavior of the pion self-energy in this case.

In fig. 1, the solid line represents the pion self-energy
as obtained in relativistic calculations. For comparison,
the dashed line shows the pion self-energy as calculated
in the non-relativistic approach. As one can see, even for
k = 0, we obtain a large discrepancy. In this case the non-
relativistic counterpart of the pion self-energy vanishes
identically, ReΠ̃nr (ω, k → 0) = 0, while the relativistic
calculation results in an increase of the pion self-energy
along with ω. One can easily find that the discrepancy
arises even at the lowest-order level:

+Π  =
.

Consider, for example, the particle-hole contribution,
as given by the first one-loop diagram. The relativistic

evaluation yields (see, e.g., [2]):

ReΠph (ω, k) =
f2

π2

KµKµM∗2

m2
πk

×
∫ pF

0

dpp

ε
ln

∣∣∣∣∣
(KµKµ − 2kp)2 − 4ω2ε2

(KµKµ + 2kp)2 − 4ω2ε2

∣∣∣∣∣ , (3)

where M∗ is the effective nucleon mass, ε2 = M∗2 + p2,
pF is the nucleon Fermi momentum, and Kµ = (ω,k) is
the pion four-momentum.

It is instructive to analyze the low-density limit of
this expression in order to compare with the known non-
relativistic form. At low density of nucleons, pF/M∗ � 1,
one has ε (p) 	 M∗. With this replacement, the integra-
tion can be performed to give

ReΠph (ω, k) =
4f2

m2
π

(
ω2 − k2

)

× (Φ0 (ω, k; pF) + Φ0 (−ω, k; pF)) , (4)

where

Φ0 (ω, k; pF) =
1
4π2

M∗3

k3

×
(
1
2

(
a2 − k2V 2

F

)
ln

a+ kVF

a − kVF
− akVF

)
(5)

is the Migdal function, with

a = ω +
ω2 − k2

2M∗ , VF = pF/M∗. (6)

This non-relativistic limit to the lowest-order particle-hole
self-energy has been obtained from relativistic kinematics.
As given by eq. (4), for ω � 2M∗ and in the limiting case
of k → 0, we have

ReΠph (ω, k → 0) =
f2

M∗m2
π

nω2

− f2

m2
π

nk2

(
1

k2/2M∗ − ω
+

1
k2/2M∗ + ω

)
(7)

with

n =
2p3

F

3π2

being the number density of nucleons for isosymmetric
nuclear matter. The corresponding relativistic calculation
of the lowest-order ∆h loop gives an expression, which, in
the low-density limit and ω � 2M∗, takes the following
form [8]:

ReΠ∆h (ω, k → 0) =
8f2

∆

9m2
π

M∗ +M∗
∆

M∗2
∆

nω2

+
8f2

∆

9m2
π

M∗
∆ − M∗

ω2 − (M∗
∆ − M∗)2

nk2 . (8)
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A comparison of eq. (7) and eq. (8) with the non-
relativistic form of the lowest-order pion self-energy [7]

ReΠnr (ω, k → 0) = − f2

m2
π

nk2

(
1

k2/2M∗ − ω

+
1

k2/2M∗ + ω

)
+

8f2
∆

9m2
π

M∗
∆ − M∗

ω2 − (M∗
∆ − M∗)2

nk2 (9)

shows that the relativistic evaluation results in additional
contributions, which do not vanish when k → 0. In fact,
one finds

ReΠph(ω, k→0)+ReΠ∆h(ω, k→0)−ReΠnr(ω, k→0)=

(
f2

M∗m2
π

+
8f2

∆

9m2
π

M∗ +M∗
∆

M∗2
∆

)
nω2 . (10)

The discrepancy appears at the order 1/M∗ and there-
fore should be suppressed as compared to the O(1) contri-
butions. However, we recall that the p-wave contribution
vanishes identically when k → 0. Therefore, even at nor-
mal density, n = n0, the above s-wave contribution results
in an increase, up to 20%, of the near-threshold effective

pion mass, defined as m∗
π =

√
m2

π + Π̃ (m∗
π, 0). This con-

tribution should be crucial in the case of large transferred
energy, as typical for experiments with relativistic heavy-
ion collisions.

To explain the origin of these terms, we recall that the
pion self-energy represents the forward-scattering ampli-
tude of the pion in the medium. In the non-relativistic
theory, the above ph and ∆h diagrams, taking also into
account the correlations in the medium, are known to re-
produce well the (forward) p-scattering amplitude in the
isospin-symmetric nuclear matter, while the s-scattering
contribution is known to be small. Due to the non-
relativistic reduction of πNN interaction, as given by
eq. (2), the s-wave scattering gives no contribution to the
ph and ∆h diagrams.

However, the relativistic form of the pion-nucleon
and pion-delta interactions, as given by eq. (1), causes
an s-wave contribution to the above diagrams. Con-
sider, for example, the πNN interaction. At the pion
four-momentum Kµ = (ω,k = 0), these couplings in-
volve only the time component of the currents. In
the low-density limit, pF/M∗ � 1, the matrix el-
ement 〈N (p′)| ψ̄Nγ0γ5τψN |N (p)〉 is proportional to
σ · (p+ p′) /2M∗, and the non-relativistic reduction,
eq. (2), of the πNN interaction implies that the part of
the scattering amplitude generated by Lint at the second
order vanishes for nucleons at rest. However, this is not the
case, if the time component of the interaction is relativis-
tically incorporated into the calculation of the ph and ∆h
diagrams. Integration over the nucleon momentum results
in a contribution, proportional to ω2, as given by eq. (10).

Thus, in contrast to the non-relativistic approach, a
relativistic evaluation of the ph and ∆h contributions
to the pion self-energy incorporates the s-wave scatter-
ing. This means that a covariant relativistic evaluation

of the pion self-energy cannot be restricted only to the
ph and ∆h diagrams. A correct calculation of the (for-
ward) s-wave amplitude actually requires the inclusion of
many more complicated diagrams, since the s-scattering
is caused mostly by the short-distance interactions, with
a scale r0 ∼ M−1. In this case the pion self-energy should
be represented as the sum of three graphs:

+Π  =~
+

.

Here the third diagram represents the contribution to the
(forward) s-wave amplitude caused by the above short-
distance interactions in the medium. The rectangular
block includes many diagrams which have no parts con-
nected either by the particle-hole or ∆-isobar and nucleon
hole lines. All the diagrams of this type are characterized
by large momenta in the intermediate states, of the order
M , and thus contribute to the pion self-energy at the order
M−1. When these diagrams are included, one can expect
a very strong cancellation of the s-wave contribution to
the pion self-energy. Indeed, for example, at the threshold
ω = mπ, from eq. (7) and eq. (8) we obtain the forward
s-scattering amplitude as

1
n
ReΠ (mπ, 0) =

(
f2

M∗ +
8f2

∆

9
M∗ +M∗

∆

M∗2
∆

)
	 1.3 fm.

(11)
The correlation effects, as well as a reasonable variation of
the effective nucleon (and delta) mass, do not change the
order of magnitude of this result. When the short-range
correlations are taken into account we obtain

1
n
ReΠ̃ (mπ, 0) 	 1.11 fm. (12)

Chiral symmetry, however, imposes strong constraints on
the near-threshold behavior of this isospin-even ampli-
tude [13] and it is known experimentally [14,15] to be
much smaller, as compared to that given by eq. (11) and
eq. (12).
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